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Superstatistical random-matrix-theory approach to transition intensities in mixed systems
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We study the fluctuation properties of transition intensities applying a recently proposed generalization of
the random matrix theory, which is based on Beck and Cohen’s superstatistics. We obtain an analytic expres-
sion for the distribution of the reduced transition probabilities that applies to systems undergoing a transition
out of chaos. The obtained distribution fits the results of a previous nuclear shell model calculations for some
electromagnetic transitions that deviate from the Porter–Thomas distribution. It agrees with the experimental
reduced transition probabilities for the 26Al nucleus better than the commonly used �2 distribution.
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I. INTRODUCTION

Random matrix theory �RMT� is believed to describe
quantal systems whose classical counterpart has a chaotic
dynamics �1–3�. In RMT the matrix elements of the Hamil-
tonian in some basis are replaced with random numbers. The
theory is based on two main assumptions: �i� The matrix
elements are independent identically distributed random
variables, and �ii� their distribution is invariant under unitary
transformations. These lead to a Gaussian probability density
distribution for the matrix elements, P�H��exp�−�
�Tr�H†H��. With these assumptions, RMT presents a satis-
factory description for numerous chaotic systems. Agreement
with RMT is now considered to be a signature of chaos in the
quantum system. For time-reversal-invariant systems, the ap-
propriate form of random matrix theory is the Gaussian or-
thogonal ensemble �GOE�; that is the form which will
mainly be considered in this paper.

For most systems, however, the phase space is partitioned
into regular and chaotic domains. These systems are known
as mixed systems. Attempts to generalize RMT to describe
such mixed systems are numerous; for a review please see
�3�. Most of these attempts are based on constructing en-
sembles of random matrices whose elements are independent
but not identically distributed. Thus, the resulting expres-
sions are not invariant under base transformation. The first
work in this direction is due to Rosenzweig and Porter �4�.
They model the Hamiltonian of the mixed system by a su-
perposition of a diagonal matrix of random elements having
the same variance and a matrix drawn from a GOE. There-
fore, the variances of the diagonal elements of the total
Hamiltonian are different from those of the off-diagonal
ones, unlike the GOE Hamiltonian in which the variances of
diagonal elements are twice those of the off-diagonal ones.
Hussein and Pato �5� used the maximum entropy principle to
construct “deformed” random-matrix ensembles by imposing
different constraints for the diagonal and off-diagonal ele-
ments. This approach has been successfully applied to the
case of metal-insulator transition �6�. A recent review of the
deformed ensemble is given in �7�. Ensembles of band ran-
dom matrices, whose entries are equal to zero outside a band
of limited width along the principal diagonal, have often
been used to model mixed systems �2,8,9�.

The past decade has witnessed a considerable interest de-

voted to the possible generalization of statistical mechanics.
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Much work in this direction followed the Tsallis seminal
paper �10�. Tsallis introduced a nonextensive entropy, which
depends on a positive parameter q known as the entropic
index. The standard Shannon entropy is recovered for q=1.
Applications of the Tsallis formalism covered a wide class of
phenomena; for a review please see, e.g., �11�. Recently, the
formalism has been applied to include systems with mixed
regular-chaotic dynamics in the framework of RMT �12–17�.
However, the constraints of normalization and existence of
an expectation value for Tr�H†H� set up an upper limit for
the entropic index q beyond which the involved integrals
diverge. This restricts the validity of the nonextensive RMT
to a limited range near the chaotic phase �16,17�.

Another extension of statistical mechanics is provided by
the formalism of superstatistics �statistics of a statistics�, re-
cently proposed by Beck and Cohen �18�. Superstatistics
arises as weighted averages of ordinary statistics �the Boltz-
mann factor� due to fluctuations of one or more intensive
parameter �e.g., the inverse temperature�. It includes Tsallis’
nonextensive statistics, for q�1, as a special case in which
the inverse temperature has a �2-distributions. This formal-
ism has been applied to model a mixed system within the
framework of RMT in Refs. �19,20�. The joint matrix
element distribution was represented as an average over
exp�−� Tr�H†H�� with respect to the parameter �. The dif-
ferent choices of parameter distribution, which had been
studied in Beck and Cohen’s paper �18�, were considered in
�19�. The parameter distribution has also been estimated �20�
by applying the principle of maximum entropy, as done by
Sattin �21�. Explicit analytical results were obtained for the
level density and the nearest neighbor-spacing distributions.

Matrix elements of transition operator probe the system’s
wave functions so that their statistical fluctuations provide
additional information. In chaotic systems, the reduced tran-
sition probabilities follow the Porter-Thomas distribution
�22�. This is a �2-distribution of one degree of freedom. As
the system becomes more regular, the transition probabilities
deviate from the Porte-Thomas distribution. To account for
these deviations, Alhassid and Novoselsky �23� suggested
that the transition widths in the mixed system may be ana-
lyzed in terms of a �2-distribution of a lower degree of free-
dom. The latter distribution does not fit well the empirical
distributions but consists with the observed number of weak

transitions as compared with the Porter-Thomas distribution
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�see, e.g., �24–26��. The distributions of experimental re-
duced transition probabilities B in 26Al �28� and 30P �29�
expressed as functions of the log B have peaks at log B�0
while all the �2 distributions are peaked at log B=0. We
show in the present paper that the superstatistical RMT pro-
vides us with a more suitable generalization of the Porter-
Thomas distribution. In Sec. II we briefly review the concept
of superstatistics and the necessary generalization required to
express the characteristics of the spectrum of a mixed system
into an ensemble of chaotic spectra with different local mean
level density. The evolution of the reduced transition-
intensity distribution during the stochastic transition induced
by increasing the local-density fluctuations is considered in
Sec. III. Section IV demonstrates the quality of fit achieved
by the obtained transition-intensity distribution by compar-
ing its prediction with the results of a shell-model calculation
by Hamoudi et al. �26�. The conclusion of this work is for-
mulated in Sec. V.

II. SUPERSTATISTICAL RMT

To start with, we briefly review the superstatistics concept
as introduced by Beck and Cohen �18�. Consider a nonequi-
librium system with spatiotemporal fluctuations of the in-
verse temperature �. Locally, i.e., in spatial regions �cells�
where � is approximately constant, the system may be de-
scribed by a canonical ensemble in which the distribution
function is given by the Boltzmann factor e−�E, where E is an
effective energy in each cell. In the long-term run, the system
is described by an average over the fluctuating �. The system
is thus characterized by a convolution of two statistics, and
hence the name “superstatistics.” One statistics is given by
the Boltzmann factor and the other one by the probability
distribution f��� of � in the various cells. One obtains Tsal-
lis’ statistics when � has a �2 distribution, but this is not the
only possible choice. Beck and Cohen give several possible
examples of functions which are possible candidates for
f���. Sattin �21� suggested that, lacking any further informa-
tion, the most probable realization of f��� will be the one
that maximizes the Shannon entropy. Namely this version of
superstatistics formalism will now be applied to RMT.

A. Joint distribution of the matrix-elements

Gaussian random-matrix ensembles have several common
features with the canonical ensembles. In RMT, the square of
a matrix element plays the role of energy of a molecule in a
gas. When the matrix elements are statistically identical, one
expects them to become distributed as the Boltzmann’s. One
obtains a Gaussian probability density distribution of the ma-
trix elements

PG�H� � exp�− � Tr�H†H�� �1�

by extremizing the Shannon entropy �1� subjected to the con-
straints of normalization and existence of the expectation
value of Tr�H†H�. Here Tr means trace and H† is the Her-
mitian conjugate of H. The quantity Tr�H†H� plays the role

of the effective energy of the system, while the role of the
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inverse temperature � is played by �, being twice the inverse
of the matrix-element variance.

Our main assumption is that Beck and Cohen’s supersta-
tistics provides a suitable description for systems with mixed
regular-chaotic dynamics. We consider the spectrum of a
mixed system as made up of many smaller cells that are
temporarily in a chaotic phase. Each cell is large enough to
obey the statistical requirements of RMT but has a different
distribution parameter � associated with it, according to a

probability density f̃���. Consequently, the superstatistical
random-matrix ensemble that describes the mixed system is
a mixture of Gaussian ensembles. Its matrix-element joint
probability density distributions obtained by integrating dis-
tributions of the form in Eq. �1� over all positive values of �

with a statistical weight f̃���,

P�H� = �
0

	

f̃���
exp�− � Tr�H†H��

Z���
d� , �2�

where Z���=�exp�−� Tr�H†H��d�. Here we use the “B type
superstatistics” �18�. The distribution in Eq. �2� is isotropic
in the matrix-element space. Relations analogous to Eq. �1�
can also be written for the joint distribution of eigenvalues as
well as any other statistic that is obtained from it by integra-
tion over some of the eigenvalues, such as the nearest-
neighbor-spacing distribution and the level number variance.

The distribution f̃��� has to be normalizable, to have at least
a finite first moment and reduces a delta function as the sys-
tem becomes fully chaotic.

An analogous ensemble made of a superposition of
random-matrix ensembles has recently been considered by
Muttalib and Klauber �27�. These authors have been seeking
generalizations of Gaussian random-matrix ensembles, with
the probability distributions P�H� that are functions of the
single variable Tr�H†H� like the distribution �2� that follows
here from the concept of superstatistics. However, they work
not directly with the distributions P�H� themselves, but with
the associated characteristic functions defined as the Fourier
transforms

C�T� =� exp�i Tr�T†H��P�H�dH . �3�

They prove, among other things, that if C�T� is a function of
Tr�T†T� only, then the most general C�T�, valid for random-
matrix ensembles of arbitrarily large dimension can be rep-
resented as

C�T� =� f�b�exp�− b Tr�T†T��db . �4�

The inverse Fourier transformation of C�T� then leads to an
expression for P�H� similar to the one in Eq. �2�. The
equivalence of the approach to RMT initiated by Muttalib
and Klauber with the superstatistical approach used in
�19,20� and advocated here is due to the fact that the Fourier
transformation is accomplished by a linear operator. We con-
sider their result as a justification of using Eq. �2� for en-

sembles of matrices of dimensions N→	.
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B. Marginal distribution for a single matrix-element

Unlike the Gaussian random-matrix ensembles, the super-
statistical ensemble has correlated matrix elements. This can
clearly be seen by the fact that the joint distribution function
defined by Eq. �2� does not factorize into a product of distri-
butions of the individual matrix elements. However, it is not
difficult to obtain a marginal distribution for each of the in-
dividual matrix elements.

We shall confine our consideration for the GOE; the gen-
eralization to the other symmetry universalities is straightfor-
ward. In this case,

Tr�H†H� = Tr�H2� = �
k

Hkk
2 + 2�

k�l

Hkl
2 . �5�

Integrating the joint distribution P�H� over all the matrix
elements except one, say Hif, we obtain

pif�Hif� = �
0

	

f̃����2�/
 exp�− 2�Hif
2 �d� . �6�

The parameter � essentially defines the energy scale of the
individual ensembles, whose superposition compose the su-
perstatistical ensemble. We, therefore, assume that the distri-
bution �6� will hold for the superstatistical distribution of any
physical quantity having the dimension of energy, which is
represented as a Gaussian random variable in the case of
GOE.

We note that the distribution function of superstatistical
ensemble depends on the matrix elements through Tr�H2�
which is base invariant. In other words, the function P�H� is
invariant under rotation in the space of the matrix elements.
Therefore, the distributions pif have the same form for all
off-diagonal matrix elements of H.

C. Parameter distribution

Following Sattin �21�, we use the principle of maximum

entropy to evaluate f̃���. Lacking a detailed information
about the mechanism causing the deviation from the predic-

tion of RMT, the most probable realization of f̃��� will be
the one that extremizes the Shannon entropy

S = − �
0

	

f̃���ln f̃���d� �7�

with the following constraints:
Constraint 1. The major parameter of RMT is � defined

in Eq. �1�. Superstatistics was introduced in Eq. �2� by al-
lowing � to fluctuate around a fixed mean value 	�
. This
implies the existence of this mean value

	�
 = �
0

	

f̃����d� . �8�

Constraint 2. The fluctuation properties are usually de-
fined for the unfolded spectra, which have a unit mean level
spacing. The mean level density is proportional to the inverse
square root of �. We thus require the existence of the integral
056119
�
0

	

f̃����−1/2d� = 1. �9�

Therefore, the most probable f̃��� extremizes the func-
tional

F = − �
0

	

f̃���ln f̃���d� − �1�
0

	

f̃����d�

− �2�
0

	

f̃����−1/2d� , �10�

where �1 and �2 are Lagrange multipliers. As a result, we
obtain

f̃��� = C exp�− �� �

�0
+ 2��0

�
1/2� �11�

where � and �0 are parameters, which can be expressed in
terms of the Lagrange multipliers �1 and �2, and C is a
normalization constant. The latter is given by

C =
��


�0G03
30��3�0, 1

2 ,1� . �12�

Here G03
30�x �b1 ,b2 ,b2� is a Meijer’s G-function �30,31�;

see also the Appendix of Ref. �20�. The parameter distribu-

tion f̃��� is peaked at �0 and tends to a delta function as �
→ 	 . The value of �0 will be fixed in the next section while
the parameter � will be considered as the tuning parameter
for the stochastic transition.

A parameter distribution analogous to f̃��� is obtained in
�20�, where the variable � is replaced by the local mean level
density. This distribution is used in �20� to derive expressions
for the level density distribution, the nearest-neighbor spac-
ing distribution, and the two-level correlation function for
spectra of superstatistical ensembles. The expression ob-
tained for the level-density distribution has a finite value at
the center of the spectrum for arbitrarily large ensemble di-

mension N, and thus satisfies a necessary condition on f̃���,
which is required by Muttalib and Klauber �27�.

III. TRANSITION-INTENSITY DISTRIBUTION

The probability Bif of a transition from the initial configu-
ration �i
 to the final configuration �f
 is given by

Bif = �Wif�2, �13�

where

Wif = 	f �O�i
 �14�

is the square of the transition operator O in a special basis. In
a chaotic system, the eigenstates �i
 and �f
 are believed to be
very complicated. If the operator O conserves time revers-
ibility, the matrix elements Wif are real. For a chaotic system,
it is reasonable to assume that Wif are identically distributed
Gaussian random variable. This entails that the transition in-
tensities can be represented by a random variable that takes

the values
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yif =
Bif

	Bif

�15�

where 	Bij
 is a suitably defined local average value �24�, and
has a Porter-Thomas distribution

PPT�y� =� �


y
e−�y . �16�

The parameter � is defined by the requirement that 	y
=1,
and is equal to 1/2. A more elaborate derivation of the Porter-
Thomas distribution is given by Barbosa et al. �25�.

We now derive the superstatistical generalization of the
Porter-Thomas distribution. For this purpose, we assume that
the matrix elements Wif are distributed according to Eq. �6�.
The parameter � in Eq. �16� is no more considered as a
constant but allowed to fluctuate according to the distribution

f���. The superstatistical transition intensity distribution is
then given by

PSuperstatistical�y� = �
0

	

f̃���� �


y
e−�yd� �17�

Substituting Eq. �11� for f̃��� and integrating over �, we
obtain

PSuperstatistical�y� =
�

�
y

G03
30��2�� + �0y��0, 1

2 , 3
2�

�0�y + �/�0�3/2G03
30��3�0, 1

2 ,1�
�18�

The parameter �0 is determined from the requirement that
	y
=1, which yields

�0 =
�

2

G03
30��3�0,0, 1

2�
G03

30��3�0, 1
2 ,1� . �19�

Replacing Meijer’s G-function by its large-argument
asymptotic expression

G0,3
3,0�z�b1,b2,b3� �

2


�3
z�b1+b2+b3−1�/3 exp�− 3z1/3� . �20�

one can easily show that PSuperstatistical�y� is reduced to the
Porter-Thomas distribution as the parameter �→	.

Several independent results with different models, have
suggested that transition strengths in a chaotic system follow
a �2 distribution

P�2�y,� =
1

2/2��

2
 y/2−1e−y , �21�

with =1 �porter-Thomas� degrees of freedom, the transition
strengths in a less chaotic system a �2 distribution with a
number of degrees of freedom less than one. Alhassid and
Levine �32� introduced this distribution using maximum-
entropy arguments. Several studies of electromagnetic tran-
sition intensities in nuclei have also been performed
�23–26,28,29�; each of these has suggested that the �2 distri-
bution with �1 is appropriate for relatively regular sys-

tems.

056119
Experimental data for transition intensities range over
several orders of magnitude. It is often more convenient to
consider a logarithmic variable as the argument. The prob-
ability density function in terms of loga y is

F�loga y� = y ln aF�y� . �22�

We compare in Fig. 1 the evolution of PSuperstatistical�log10 y�
during the transition from chaotic to regular dynamics by
varying the tuning parameter � from 	 �GOE� to 10−6 �al-
most regular� with a corresponding evolution of
P�2�log10 y ,� where  varies between 1 and 0.1. Of special
interest is the fact that the maximum of P�2�log10 y ,� occurs
at log10 y=0 for any value of . This property does not hold
for PSuperstatistical�log10 y�. The peak of superstatistical distri-
bution for less chaotic systems occurs at log10 y�0 and
moves towards lower values as the parameter � decreases.
We show in the next section that this is indeed the behavior
of physical systems.

IV. DATA ANALYSIS

The purpose of this section is to show that the proposed
superstatistical distribution succeeds in the situations where
the �2 distribution fails. We show this by using results from
two works, which examine the effect of a transition from
chaos to integrability on gamma-ray reduced transition prob-
abilities.

The first work is done by Hamoudi, Nazmitdinov and
Alhassid �26�. They calculated the electric quadrupole �E2�
and magnetic dipole �M1� transition intensities among the
isospin T=0,1 states of nuclei with mass number 60. They
applied the interacting shell model with realistic interaction
for pf shell nuclei with a 56Ni core. It is found that the B�E2�
transitions are well described by a GOE �Porter-Thomas dis-
tribution�. However, the statistics for the B�M1� transitions is
sensitive to Tz. The M2 transition operator consists of an
isoscalar and isovector components. The Tz=1 nuclei, in
which both components contribute, exhibit a Porter-Thomas

FIG. 1. �Color online� Evolution of the superstatistical distribu-
tion PSuperstatistical�log10 y� and the �2 distirbutions P�2�log10 y ,�
during the transition from chaotic to regular dynamics. The solid
curves, labeled as PT, refer to the Porter-Thomas distribution.
distribution. In the meanwhile, a significant deviation from
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the GOE statistics for the Tz=0 nuclei, where the matrix
elements are purely isoscalar and relatively weak �33�.

We analyzed the reduced M1 transition intensities for
both the Tz=1 60Co nuclei and Tz=0 60Zn calculated by
Hamoudi et al. �26� nuclei using the superstatistical transi-
tion intensity distribution in Eq. �14�. These authors sampled
a large number of matrix elements for each transition opera-
tor, which is equal to 562=3136 and 662=4356. Figure 2
compares the results of calculations using Eq. �14� with the
numerical results of Hamoudi et al. �26� as well as the “best-
fit” �2 distribution deduced by these authors. The figure
clearly shows the advantage of the superstatistical distribu-
tion proposed here over the �2 distribution, at least for this
numerical experiment.

The second work that we consider here is that of Adams,
Mitchell, and Shriner �28�. They collected approximately
1500 experimental reduced electromagnetic transition
strengths between the excited states of the nucleus 26Al.
Their data involve levels with isospin T=0 and T=1 between
the ground state and the excitation energy of 8.067 MeV.
Figure 3 compares these experimental data with results of
calculations using Eq. �14� with �=1.24 as well as the “best-
fit” �2 distribution with a parameter  slightly greater than 1.
The figure again shows the advantage of the superstatistical
distribution over the �2 distribution, although the agreement
with the data is not as good as in the cases shown in Fig. 2.
The experimental histogram is mostly higher than the theo-
retical curves especially in the peak region, although the data
was normalized to 0.83 in order to approximately take care
of the upper and lower detection thresholds. The percentage

FIG. 2. �Color online� Nuclear shell-model M1 transition inten-
sities in A=60, calculated by Hamoudi et al. �26�, �histograms�
compared with the superstatistical distribution �14� with parameters
�=1.499,0.064, and 0.030, respectively �solid curves� and the �2

distribution �17� with parameters =1,0.64, and 0.34, respectively
�dashed curves�.
of undetected transitions may have been underestimated be-
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cause its estimation was based on the Porter-Thomas distri-
bution.

V. CONCLUSION

The eigenstates of a chaotic system are extended and
cover the whole domain of classically permitted motion ran-
domly, but uniformly. They overlap substantially, as mani-
fested by level repulsion. There are no preferred eigenstates;
the states are statistically equivalent. As a result, the matrix
elements of transition operators in any basis are independent
and have a Gaussian distribution, which leads to the Porter-
Thomas distribution for reduced transition intensities. Com-
ing out of the chaotic phase, the extended eigenstates be-
come less and less homogeneous in space. Different
eigenstates become localized in different places and the ma-
trix elements that couple different pairs are no more statisti-
cally equal. The matrix elements will no longer have the
same variance; one has to allow each of them to have its own
variance. But this will dramatically increase the number of
parameters of the theory. The proposed superstatistical ap-
proach solves this problem by treating all of the matrix ele-
ments as having a common variance, not fixed but fluctuat-
ing. One then expresses the probability density of transition
intensities as an average of Porter-Thomas distributions with
different mean intensities. The principle of maximum en-
tropy is used to estimate the inverse-mean-intensity distribu-
tion. The resulting transition-intensity distribution is found to
agree with the results of shell model calculation as well as
with experimental data better that the �2 distribution, which

FIG. 3. �Color online� The distribution of experimental reduced
transition probabilities in 26Al from Ref. �24� �histogram� compared
with the superstatistical distribution �14� with parameter �=1.24
�solid curve� and the �2 distribution �17� with parameters =1.04
�dashed curve�.
is often used for this purpose.
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